Dynamical structure factor for Haldane-gap antiferromagnets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys.: Condens. Matter 11 L187
(http://iopscience.iop.org/0953-8984/11/19/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.214
The article was downloaded on 15/05/2010 at 11:31

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Dynamical structure factor for Haldane-gap antiferromagnets

J M Wesselinowa
University of Sofia, Faculty of Physics, 5 Blvd J Bouchier, 1164 Sofia, Bulgaria

Received 19 February 1999

Abstract

The dynamical properties of a spin-1 chain with single-ion easy-plane anisotropy are studied by a Green's function technique. The longitudinal and transverse dynamical structure factors (DSFs) have been obtained from the imaginary part of the Green's functions. The static DSFs as a function of the momentum are numerically calculated.

Haldane [1] first argued that integer-spin S antiferromagnetic (AFM) Heisenberg chains have a singlet ground state which has a gap to a triplet excited state. This has been well confirmed both experimentally and theoretically for the $S=1$ system. Recently, detailed inelastic neutronscattering experiments [2] were carried out on $\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2} \mathrm{NO}_{2}\left(\mathrm{ClO}_{4}\right)$ (NENP), measuring the dynamical structure factor (DSF) $S(k, \omega)$ for $k \geqslant 0.3 \pi$. The DSF crosses over from onemagnon to two-magnon behaviour as k is swept across the Brillouin zone. Golinelli et al [3] have studied the dynamic spin correlation function of a spin-1 AFM chain with easy-plane single-ion anisotropy using the exact diagonalization by the Lanczos method for chain lengths of up to $N=16$ spins. Takahashi [4] used the diagonalization method and calculated not only the first excited state but also higher excited states and their contribution to the DSF. Sorensen and Affleck [5] presented results on the equal time structure function $S(k)$ using the densitymatrix renormalization-group method with chain length $L=100$. They found that at $k \approx \pi$ a single-magnon process dominates, whereas at $k \approx 0$ a two-magnon process dominates.

In our previous paper [6] we have calculated the excitation spectrum of an infinite onedimensional spin-1 AFM Heisenberg chain with both exchange anisotropy and single-ion anisotropy by a Green's function technique. The aim of the present paper is to calculate the DSF from the imaginary part of the Green's function for Haldane-gap AFMs.

NENP, which is one of the most promising candidates for a Haldane-gap system, is not isotropic. The largest of the anisotropies is the single-ion anisotropy D. The Hamiltonian which describes NENP well is given by

$$
\begin{equation*}
H=\sum_{i}\left[J S_{i} \cdot S_{i+1}+D\left(S_{i}^{z}\right)^{2}\right] \tag{1}
\end{equation*}
$$

with $D / J=0.2$ and $J=3.8 \mathrm{meV}$ [2]. For the approximate calculation of the Green's function $G_{k}(t)=-\mathrm{i} \Theta(t)=\left\langle\left[B_{k}(t), B_{k}^{+}\right]\right\rangle$with the operators B_{k}, B_{k}^{+}we use a method proposed by Tserkovnikov [7] which is appropriate for spin problems. After a formal integration of the equation of motion for the Green's function one obtains

$$
\begin{equation*}
G_{k}(t)=-\mathrm{i} \Theta(t)\left\langle\left[B_{k}, B_{k}^{+}\right]\right\rangle \exp \left(-\mathrm{i} E_{k}(t) t\right) \tag{2}
\end{equation*}
$$

where
$E_{k}(t)=\epsilon_{k}-\frac{i}{t} \int_{0}^{t} \mathrm{~d} t^{\prime} t^{\prime}\left\{\frac{\left\langle\left[j_{k}(t), j_{k}^{+}\left(t^{\prime}\right)\right]\right\rangle}{\left\langle\left[B_{k}(t), B_{k}^{+}\left(t^{\prime}\right)\right]\right\rangle}-\frac{\left\langle\left[j_{k}(t), B_{k}^{+}\left(t^{\prime}\right)\right]\right\rangle\left\langle\left[B_{k}(t), j_{k}^{+}\left(t^{\prime}\right)\right]\right\rangle}{\left\langle\left[B_{k}(t), B_{k}^{+}\left(t^{\prime}\right)\right]\right\rangle^{2}}\right\}$
with the notation $j_{k}=\left[B_{k}, H_{i n t}\right]$. The time-independent term

$$
\begin{equation*}
\epsilon_{k}=\frac{\left\langle\left[\left[B_{k}, H\right], B_{k}^{+}\right]\right\rangle}{\left\langle\left[B_{k}, B_{k}^{+}\right]\right\rangle} \tag{4}
\end{equation*}
$$

gives the excitation spectrum in the generalized Hartree-Fock approximation. The timedependent term includes the damping effects. Calculations yield the following expressions for the Green's functions for the transverse and longitudinal excitations [6]:

$$
\begin{equation*}
G^{x x}(k, \omega)=\frac{4\left\langle S_{0}^{-} S_{0}^{+}\right\rangle \epsilon_{11}}{\omega^{2}-\epsilon_{k}^{2}+2 \mathrm{i} \omega \gamma_{k}^{11}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{z z}(k, \omega)=\frac{2\left\langle S_{0}^{z} S_{0}^{z}\right\rangle}{\omega-\epsilon^{z}(k)+\mathrm{i} \gamma_{k}^{z z}} \tag{6}
\end{equation*}
$$

with

$$
\begin{align*}
& \epsilon(k)=\frac{1}{2}\left[\epsilon_{11}+\epsilon_{22} \pm \sqrt{\left(\epsilon_{11}-\epsilon_{22}\right)^{2}}\right] \tag{7}\\
& \epsilon_{11}(k)=\frac{1}{2\left\langle S_{0}^{-} S_{0}^{+}\right\rangle}\left[J \left(\left\langle S_{0}^{+} S_{1}^{-}\right\rangle \cos k-2\left\langle S_{0}^{z} S_{1}^{z}\right\rangle-2\left\langle S_{-1}^{z} S_{0}^{z}\right\rangle+\left\langle S_{-1}^{-} S_{0}^{+}\right\rangle \cos 2 k\right.\right. \\
& \left.-\left\langle S_{-1}^{+} S_{0}^{-}\right\rangle-2\left\langle S_{-1}^{z} S_{0}^{z}\right\rangle \cos 2 k-2\left\langle S_{0}^{z} S_{1}^{z}\right\rangle \cos k+\left\langle S_{0}^{-} S_{1}^{+}\right\rangle\right) \\
& \left.+D\left(\left\langle S_{0}^{+} S_{0}^{-}\right\rangle-4\left\langle S_{0}^{z} S_{0}^{z}\right\rangle+\left\langle S_{0}^{-} S_{0}^{+}\right\rangle\right)\right] \tag{8}\\
& \epsilon_{22}(k)=\frac{1}{2\left\langle S_{0}^{+} S_{0}^{-}\right\rangle}\left[J \left(\left\langle S_{0}^{-} S_{1}^{+}\right\rangle \cos k-2\left\langle S_{0}^{z} S_{1}^{z}\right\rangle-2\left\langle S_{-1}^{z} S_{0}^{z}\right\rangle+\left\langle S_{-1}^{+} S_{0}^{-}\right\rangle \cos 2 k\right.\right. \\
& \left.-\left\langle S_{0}^{+} S_{1}^{-}\right\rangle-2\left\langle S_{0}^{z} S_{1}^{z}\right\rangle \cos k+\left\langle S_{-1}^{-} S_{0}^{+}\right\rangle-2\left\langle S_{-1}^{z} S_{0}^{z}\right\rangle \cos 2 k\right) \\
& \left.+D\left(\left\langle S_{0}^{-} S_{0}^{+}\right\rangle-4\left\langle S_{0}^{z} S_{0}^{z}\right\rangle+\left\langle S_{0}^{+} S_{0}^{-}\right\rangle\right)\right]=-\epsilon_{11}(k) \tag{9}\\
& \epsilon^{z}(k)=\frac{1}{2\left\langle S_{0}^{z} S_{0}^{z}\right\rangle}\left[\frac { J } { 2 } \left(\left\langle S_{0}^{+} S_{1}^{-}\right\rangle \cos k-\left\langle S_{0}^{+} S_{1}^{-}\right\rangle-\left\langle S_{-1}^{+} S_{0}^{-}\right\rangle+\left\langle S_{-1}^{+} S_{0}^{-}\right\rangle \cos 2 k\right.\right. \\
& \left.+\left\langle S_{0}^{-} S_{1}^{+}\right\rangle \cos k-\left\langle S_{0}^{-} S_{1}^{+}\right\rangle-\left\langle S_{-1}^{-} S_{0}^{+}\right\rangle+\left\langle S_{-1}^{-} S_{0}^{+}\right\rangle \cos 2 k\right) \\
& +J\left(\left\langle S_{0}^{+} S_{1}^{z} S_{1}^{-}\right\rangle \cos k-\left\langle S_{0}^{+} S_{0}^{z} S_{1}^{-}\right\rangle-\left\langle S_{-1}^{+} S_{0}^{z} S_{0}^{-}\right\rangle+\left\langle S_{-1}^{+} S_{-1}^{z} S_{0}^{-}\right\rangle \cos 2 k\right. \\
& \left.\left.-\left\langle S_{0}^{-} S_{1}^{z} S_{1}^{+}\right\rangle \cos k+\left\langle S_{0}^{-} S_{0}^{z} S_{1}^{+}\right\rangle+\left\langle S_{-1}^{-} S_{0}^{z} S_{0}^{+}\right\rangle-\left\langle S_{-1}^{-} S_{-1}^{z} S_{0}^{+}\right\rangle \cos 2 k\right)\right] . \tag{10}
\end{align*}
$$

The correlation functions are calculated from the Green's functions using the spectral theorem [6]. For the transverse and longitudinal damping we obtain, respectively:

$$
\begin{align*}
& \gamma^{11}(k)=\frac{\pi J^{2}}{\left\langle S_{0}^{-} S_{0}^{+}\right\rangle}\left[\left(\left\langle S_{0}^{z} S_{-1}^{z} S_{0}^{z}\right\rangle-\left\langle S_{-1}^{+} S_{0}^{z} S_{-1}^{-}\right\rangle \cos 2 k\right) \delta\left(\epsilon_{2 k}-\epsilon_{0}^{z}-\epsilon_{0}\right)\right. \\
& \left.\quad+\left(\left\langle S_{0}^{z} S_{1}^{z} S_{0}^{z}\right\rangle-\left\langle S_{1}^{-} S_{0}^{z} S_{1}^{+}\right\rangle \cos k\right) \delta\left(\epsilon_{k}-\epsilon_{0}^{z}-\epsilon_{0}\right)\right] \tag{11}\\
& \begin{aligned}
\gamma^{z z}(k)= & \frac{\pi J^{2}}{4\left\langle S_{0}^{z} S_{0}^{z}\right\rangle}\left[\left(\left\langle S_{1}^{+} S_{0}^{z} S_{1}^{-}\right\rangle \cos k-\left\langle S_{0}^{+} S_{1}^{z} S_{0}^{-}\right\rangle+\left\langle S_{1}^{-} S_{0}^{z} S_{1}^{+}\right\rangle \cos k-\left\langle S_{0}^{-} S_{1}^{z} S_{0}^{+}\right\rangle\right)\right. \\
& \delta\left(\epsilon_{0}-\epsilon_{k}+\epsilon_{0}^{z}\right)+\left(\left\langle S_{-1}^{+} S_{0}^{z} S_{-1}^{-}\right\rangle-\left\langle S_{0}^{+} S_{-1}^{z} S_{0}^{-}\right\rangle \cos 2 k+\left\langle S_{-1}^{-} S_{0}^{z} S_{-1}^{+}\right\rangle\right. \\
& \left.\left.\quad-\left\langle S_{0}^{-} S_{-1}^{z} S_{0}^{+}\right\rangle \cos 2 k\right) \delta\left(\epsilon_{0}-\epsilon_{2 k}+\epsilon_{0}^{z}\right)\right]
\end{aligned}
\end{align*}
$$

Figure 1. Structure factor $S^{z z}(k)$ (full curve) and $S^{x x}(k)$ (dashed curve) of the $S=1$ anisotropic infinite Heisenberg chain with $D / J=0.2$ and $J=3.8 \mathrm{meV}$.
with the positive square root of $\epsilon(k)$ from equation (7). The single-ion anisotropy D gives contribution to the damping through the higher correlation functions $\left\langle S_{0}^{+} S_{1}^{z} S_{0}^{-}\right\rangle$etc. [6]. From the imaginary part of $G^{x x}(k, \omega)$ and $G^{z z}(k, \omega)$ we obtain the transverse and longitudinal DSFs $S(k, \omega)$:

$$
\begin{equation*}
S(k, \omega)=-\frac{1}{\pi} \operatorname{Im} G(k, \omega) . \tag{13}
\end{equation*}
$$

In the isotropic $D=0$ case the ground state is a singlet and thus $S(k=0, \omega)=0$. The vanishing with k will occur quadratically. In the presence of easy-plane anisotropy the ground state is invariant only under z rotations and thus $S^{z z}(k=0, \omega)=0$, while $S^{x x}=S^{y y}$ will be non-zero at $k=0$. With in-plane anisotropy even $S^{z z}(k=0, \omega)$ will be non-zero.

The static DSFs $S(k)$ obtained by integration over frequency are numerically calculated in the -1 state and shown in figure 1 . Near $k=0, S^{z z}(k)$ approaches zero. The transverse structure factor $S^{x x}(k)$ can take on a non-zero value at $k=0$ because the rotational symmetry around the x and y axis is broken. $S^{x x}$ and $S^{z z}$ cross around $k / \pi=0.1$ and 0.8 . In the range $0.1<k / \pi<0.8, S^{z z}$ is larger than $S^{x x}$. The results are in good agreement with the theoretical results of Sorensen and Affleck [5], and with the experimental data for NENP of Ma et al [2]. We believe that the Green's function method of Tserkovnikov [7] used here is still a very useful technique for investigating the dynamical properties of the Heisenberg chains.

References

[1] Haldane D M 1983 Phys. Rev. Lett. 501153 Haldane D M 1983 Phys. Lett. 93 A 464
[2] Ma S, Broholm C, Reich D H, Sternlieb B J and Erwin R W 1992 Phys. Rev. Lett. 693571
[3] Golinelli O, Jolicoeur Th and Lacaze R 1993 J. Phys.: Condens. Matter 51399
[4] Takahashi M 1994 Phys. Rev. B 503045
[5] Sorensen E S and Affleck I 1994 Phys. Rev. B 4913235
[6] Wesselinowa J M 1998 Phys. Status Solidi b 206805
[7] Tserkovnikov Yu A 1971 Teor. Math. Fiz. 7250

