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LETTER TO THE EDITOR

Dynamical structure factor for Haldane-gap antiferromagnets

J M Wesselinowa
University of Sofia, Faculty of Physics, 5 Blvd J Bouchier, 1164 Sofia, Bulgaria

Received 19 February 1999

Abstract. The dynamical properties of a spin-1 chain with single-ion easy-plane anisotropy are
studied by a Green’s function technique. The longitudinal and transverse dynamical structure
factors (DSFs) have been obtained from the imaginary part of the Green’s functions. The static
DSFs as a function of the momentum are numerically calculated.

Haldane [1] first argued that integer-spinS antiferromagnetic (AFM) Heisenberg chains have a
singlet ground state which has a gap to a triplet excited state. This has been well confirmed both
experimentally and theoretically for theS = 1 system. Recently, detailed inelastic neutron-
scattering experiments [2] were carried out on Ni(C2H8N2)2NO2(ClO4) (NENP), measuring
the dynamical structure factor (DSF)S(k, ω) for k > 0.3π . The DSF crosses over from one-
magnon to two-magnon behaviour ask is swept across the Brillouin zone. Golinelliet al [3]
have studied the dynamic spin correlation function of a spin-1 AFM chain with easy-plane
single-ion anisotropy using the exact diagonalization by the Lanczos method for chain lengths
of up toN = 16 spins. Takahashi [4] used the diagonalization method and calculated not only
the first excited state but also higher excited states and their contribution to the DSF. Sorensen
and Affleck [5] presented results on the equal time structure functionS(k) using the density-
matrix renormalization-group method with chain lengthL = 100. They found that atk ≈ π
a single-magnon process dominates, whereas atk ≈ 0 a two-magnon process dominates.

In our previous paper [6] we have calculated the excitation spectrum of an infinite one-
dimensional spin-1 AFM Heisenberg chain with both exchange anisotropy and single-ion
anisotropy by a Green’s function technique. The aim of the present paper is to calculate the
DSF from the imaginary part of the Green’s function for Haldane-gap AFMs.

NENP, which is one of the most promising candidates for a Haldane-gap system, is not
isotropic. The largest of the anisotropies is the single-ion anisotropyD. The Hamiltonian
which describes NENP well is given by

H =
∑
i

[
JSi · Si+1 +D(Szi )

2
]

(1)

withD/J = 0.2 andJ = 3.8 meV [2]. For the approximate calculation of the Green’s function
Gk(t) = −i2(t) = 〈[Bk(t), B+

k ]〉 with the operatorsBk, B+
k we use a method proposed by

Tserkovnikov [7] which is appropriate for spin problems. After a formal integration of the
equation of motion for the Green’s function one obtains

Gk(t) = −i2(t)〈[Bk, B+
k ]〉 exp(−iEk(t)t) (2)

where

Ek(t) = εk − i
t

∫ t

0
dt ′t ′

{ 〈[jk(t), j+
k (t
′)]〉

〈[Bk(t), B+
k(t
′)]〉 −

〈[jk(t), B+
k(t
′)]〉〈[Bk(t), j+

k (t
′)]〉

〈[Bk(t), B+
k(t
′)]〉2

}
(3)
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with the notationjk = [Bk, Hint ]. The time-independent term

εk = 〈[[Bk, H ], B+
k ]〉

〈[Bk, B+
k ]〉 (4)

gives the excitation spectrum in the generalized Hartree–Fock approximation. The time-
dependent term includes the damping effects. Calculations yield the following expressions for
the Green’s functions for the transverse and longitudinal excitations [6]:

Gxx(k, ω) = 4〈S−0 S+
0 〉ε11

ω2 − ε2
k + 2iωγ 11

k

(5)

and

Gzz(k, ω) = 2〈Sz0Sz0〉
ω − εz(k) + iγ zzk

(6)

with

ε(k) = 1

2

[
ε11 + ε22±

√
(ε11− ε22)2

]
(7)

ε11(k) = 1

2〈S−0 S+
0 〉
[
J
(〈S+

0S
−
1 〉 cosk − 2〈Sz0Sz1〉 − 2〈Sz−1S

z
0〉 + 〈S−−1S

+
0 〉 cos 2k

−〈S+
−1S

−
0 〉 − 2〈Sz−1S

z
0〉 cos 2k − 2〈Sz0Sz1〉 cosk + 〈S−0 S+

1 〉
)

+D
(〈S+

0S
−
0 〉 − 4〈Sz0Sz0〉 + 〈S−0 S+

0 〉
) ]

(8)

ε22(k) = 1

2〈S+
0S
−
0 〉
[
J
(〈S−0 S+

1 〉 cosk − 2〈Sz0Sz1〉 − 2〈Sz−1S
z
0〉 + 〈S+

−1S
−
0 〉 cos 2k

−〈S+
0S
−
1 〉 − 2〈Sz0Sz1〉 cosk + 〈S−−1S

+
0 〉 − 2〈Sz−1S

z
0〉 cos 2k

)
+D

(〈S−0 S+
0 〉 − 4〈Sz0Sz0〉 + 〈S+

0S
−
0 〉
) ] = −ε11(k) (9)

εz(k) = 1

2〈Sz0Sz0〉
[J

2

(〈S+
0S
−
1 〉 cosk − 〈S+

0S
−
1 〉 − 〈S+

−1S
−
0 〉 + 〈S+

−1S
−
0 〉 cos 2k

+〈S−0 S+
1 〉 cosk − 〈S−0 S+

1 〉 − 〈S−−1S
+
0 〉 + 〈S−−1S

+
0 〉 cos 2k

)
+J
(〈S+

0S
z
1S
−
1 〉 cosk − 〈S+

0S
z
0S
−
1 〉 − 〈S+

−1S
z
0S
−
0 〉 + 〈S+

−1S
z
−1S

−
0 〉 cos 2k

−〈S−0 Sz1S+
1 〉 cosk + 〈S−0 Sz0S+

1 〉 + 〈S−−1S
z
0S

+
0 〉 − 〈S−−1S

z
−1S

+
0 〉 cos 2k

)]
. (10)

The correlation functions are calculated from the Green’s functions using the spectral theorem
[6]. For the transverse and longitudinal damping we obtain, respectively:

γ 11(k) = πJ 2

〈S−0 S+
0 〉
[ (〈Sz0Sz−1S

z
0〉 − 〈S+

−1S
z
0S
−
−1〉 cos 2k

)
δ
(
ε2k − εz0 − ε0

)
+
(〈Sz0Sz1Sz0〉 − 〈S−1 Sz0S+

1 〉 cosk
)
δ
(
εk − εz0 − ε0

) ]
(11)

γ zz(k) = πJ 2

4〈Sz0Sz0〉
[ (〈S+

1S
z
0S
−
1 〉 cosk − 〈S+

0S
z
1S
−
0 〉 + 〈S−1 Sz0S+

1 〉 cosk − 〈S−0 Sz1S+
0 〉
)

δ
(
ε0 − εk + εz0

)
+
(〈S+
−1S

z
0S
−
−1〉 − 〈S+

0S
z
−1S

−
0 〉 cos 2k + 〈S−−1S

z
0S

+
−1〉

−〈S−0 Sz−1S
+
0 〉 cos 2k

)
δ
(
ε0 − ε2k + εz0

) ]
(12)
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Figure 1. Structure factorSzz(k) (full curve) andSxx(k) (dashed curve) of theS = 1 anisotropic
infinite Heisenberg chain withD/J = 0.2 andJ = 3.8 meV.

with the positive square root ofε(k) from equation (7). The single-ion anisotropyD gives
contribution to the damping through the higher correlation functions〈S+

0S
z
1S
−
0 〉 etc. [6]. From

the imaginary part ofGxx(k, ω) andGzz(k, ω)we obtain the transverse and longitudinal DSFs
S(k, ω):

S(k, ω) = − 1

π
ImG(k, ω). (13)

In the isotropicD = 0 case the ground state is a singlet and thusS(k = 0, ω) = 0. The
vanishing withk will occur quadratically. In the presence of easy-plane anisotropy the ground
state is invariant only underz rotations and thusSzz(k = 0, ω) = 0, whileSxx = Syy will be
non-zero atk = 0. With in-plane anisotropy evenSzz(k = 0, ω) will be non-zero.

The static DSFsS(k) obtained by integration over frequency are numerically calculated
in the−1 state and shown in figure 1. Neark = 0, Szz(k) approaches zero. The transverse
structure factorSxx(k) can take on a non-zero value atk = 0 because the rotational symmetry
around thex andy axis is broken.Sxx andSzz cross aroundk/π = 0.1 and 0.8. In the range
0.1< k/π < 0.8,Szz is larger thanSxx . The results are in good agreement with the theoretical
results of Sorensen and Affleck [5], and with the experimental data for NENP of Maet al [2].
We believe that the Green’s function method of Tserkovnikov [7] used here is still a very useful
technique for investigating the dynamical properties of the Heisenberg chains.
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